
fJC
007.5

NOAA Technical Memorandum ERL AOML-89

0FC0/

^res o*

o
★

OBJECT-ORIENTED DESIGN OF A NEAR REAL-TIME MARINE
ENVIRONMENTAL DATA ACQUISITION AND REPORTING SYSTEM

J.C. Hendee

Atlantic Oceanographic arid Meteorological Laboratory
Miami, Florida
September 1996

O
lUOC

O N
 AI

ATIONAL oceanic and
TMOSPHERIC ADMINISTRATION

Environmental Research
Laboratories

NOAA Technical Memorandum ERL AOML-89

 _£07. i

AS"
fiOs %°{

ad

OBJECT-ORIENTED DESIGN OF A NEAR REAL-TIME MARINE
ENVIRONMENTAL DATA ACQUISITION AND REPORTING SYSTEM

James C. Hendee

Ocean Chemistry Division

FEB I 9 I99T

Atlantic Oceanographic and Meteorological Laboratory
Miami, Florida
September 1996

fig
UNITED STATES
DEPARTMENT OF COMMERCE

Michael Kantor
Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

D. JAMES BAKER
Under Secretary for Oceans
and Atmosphere/Administrator

Environmental Research
Laboratories

James L. Rasmussen
Director

NOTICE
Mention of a commercial company or product does not
constitute an endorsement by the NO A A Environmental
Research Laboratories. Use of information from this
publication concerning proprietary products or the tests of
such products for publicity or advertising pruposes is not
authorized.

11

Table of Contents

Abstract 1

1.0 Introduction 2
1.1 Object-Oriented Design 2

2.0 Methods and Materials 4

3.0 Results 4
3.1 The Problem Domain Component 5

3.1.1 Requirements Analysis 5
3.2 The Human Interaction Component 7

3.2.1 Classify the Humans, Describe their Tasks 8
3.2.2 Describe the Command Hierarchy 8

3.3 The Task Management Component 8
3.3.1 Identify Event-Driven Tasks 9
3.3.2 Identify Clock-Driven Tasks 9
3.3.3 Identify Priority Tasks and Critical Tasks 9
3.3.4 Identify a Coordinator 9
3.3.5 Challenge Each Task 9
3.3.6 Define Each Task 9

3.4 The Data Management Component 10
3.4.1 Data Acquisition 10
3.4.2 Data Extraction (Parsing) 11
3.4.3 Data Review 11
3.4.4 Data Transmittal 11

4.0 Discussion and Conclusion 12

5.0 Bibliography 13

Figure 1. OOA Notations 15
Figure 2. OOD Notation of Near Real-Time System 16

Appendix 1. OO A Notation and Strategies 17
Appendix 2. Example Ground-Truth Data File 18
Appendix 3. Portion of File DAPS.DAT 19
Appendix 4. Source Code for Class CmanBasic 20
Appendix 5. Source Code for Class SandKey 24
Appendix 6. Source Code for Program SandKey.ST 26
Appendix 7. Sample Report from SandKey.ST 28
Appendix 8. Report for Molasses Reef 29

iii

Object-Oriented Design of a
Near Real-Time Marine Environmental
Data Acquisition and Reporting System

by

James C. Hendee
Ocean Chemistry Division

Atlantic Oceanographic and Meteorlogical Laboratory
National Oceanic and Atmospheric Administration

4301 Rickenbacker Causeway
Miami, FL 33149-1026

Abstract The National Oceanic and Atmospheric Administration’s Coral Health
and Monitoring Program in Miami, Florida has for the last several years worked
cooperatively with the Florida Institute of Oceanography in monitoring
meteorological and oceangraphic events at selected Coastal-Marine Automated
Network sites in the Florida Straits. In a previous report, an Object-Oriented
Analysis (00 A) was conducted of the existing system with an eye toward
redesigning the system. This reports builds on the OOA results from the previous
study and utilizes the lastest in Object-Oriented Design techniques to design a
new system.

Keywords-Object-oriented analysis, object-oriented design, data management,
oceanography, Florida Keys, coral, Coastal-Marine Automated Network,
monitoring.

l

1.0 Introduction
In a previous paper (Hendee 1996) an object-oriented analysis (00A) was

conducted of a near real-time marine environmental data acquisition and reporting
system, called the CoralFax system, that exists as part of the Coral Health and
Monitoring Program (CHAMP) at the Ocean Chemistry Division, Atlantic
Oceanographic and Meteorological Laboratory (OCD/AOML), National Oceanic
and Atmopspheric Administration (NOAA) in Miami, FL. The method chosen for
that study was that of Coad and Yourdon (1991a, 1991b), hereinafter referred to as
C&Y, and one of the reasons mentioned was that there is a continuity in graphical
notation between their OOA and object-oriented design (OOD) methodologies.
Therefore, that method is also chosen here for the re-design of the new system. For
a good description of how this notation differs from other popular notations, see
Losavio et al (1994) and Wang (1995).

The system design described here is one which captures data from a satellite
archiving facility in Wallups Island, VA, reformats it, then displays it in near real­
time where environmental researchers have easy access to it. The data are collected
from meteorological and oceanographic sensors housed upon lighthouses and buoys
maintained by the National Data Buoy Center (NDBC, part of NOAA) and the
Florida Institute of Oceanograpy (FIO). The network of these data collecting
stations is called the Coastal-Marine Automated Network (C-MAN). For more
information see Hendee (1996).

One of the differences between the C&Y OOA and standard systems analysis is
that requirements gathering for a new system is absent in the C&Y OOA—it is
apparently left for OOD. A redesign of the CoralFax system became desirable after
the explosive growth of Internet and World-Wide Web (WWW) usage, as it became
easier and more convenient for people to acquire environmental data via electronic
mail (e-mail), file transfer protocol (FTP) or the WWW. Hence, the new design
includes details for the broadcasting of data via the WWW and e-mail.

1.1 Object-Oriented Design

There have been many approaches to OOD, even in so few as the last six years. Some
authors offer complete life-cycle approaches. Capretz and Lee (1993), for example offer
Methodology for Object-Oriented Design (MOOD) which they describe as an interactive
refinement process which sits between systems analysis and implementation. They mention four
types of diagrams: composition, class hierarchy, object and operation. Henderson-Sellers and
Edwards (1990) devise their own graphical notation and approach, based upon an amalgam of
approaches by other authors. They describe the design stage as, “perhaps the most loosely
defined since it is a phase of progressive decomposition toward more and more detail...and is

2

essentially a creative, not a mechanistic, process.” They provide a very good overview on
differences perceived by many authors among functional decomposition, Jackson structured
development and object-oriented development. Their seven-step summary, even though an early
one in the literature, probably best sums up most approaches today; however, what seems to be
missing is a modeling of whatever current system is in use:

1) Undertake object-oriented system requirements
specification

2) Indentify the objects (entities) and the services each can
provide (interface)

3) Establish interactions between objects in terms of
services required and services rendered

4) Analysis stage merges into design stage: use of lower-
level EDFDs/IFDs (Entity Data Flow Diagrams/Information Flow
Diagrams)

5) Bottom-up concerns —> use of library classes

6) Introduce hierarchical inheritance relationships as
required

7) Aggregation and/or generalization of classes

In review of the literature, it appears that the most popular methodologies for
OOD are Booch (1991), Rumbaugh et al (1991) and Coad and Yourdon (1991a,
1991b).

One interesting paper which offers good design heuristics is Lierberherr and
Holland (1989), although their advice is more for actual programming than analysis
and design strategies. They discuss the “Law of Demeter”, a style guide for object-
oriented programs which they claim makes for easier program maintenance. Other
goo ■ heuristics may be found in Coad et al (1995), Nerson (1992), Coad (1992) and
We ner (1992).

Meyer (1992) has proposed an interesting concept, arrived at by revising
material of other authors, called “design by contract” that is intended to make
software more reliable. The “contract” is between two software modules which act
in concert to perform a task. The client in the contract specifies how much should
be done, and the contractor’s task is to do as little as possible but still get the job
done. McKim (1995) expands on Meyer’s concept and provides some additional
Eiffel code to Meyer’s.

3

There have been several reviews of the different OOD methodologies. Some of
the more notable and comprehensive ones include Eckert and Golder (1994,
although they concentrate more on analysis than design), de Champeaux and Faure
(1992), Fichman and Kemerer (1992), Graham (1991), Henderson-Sellers and
Edwards (1990), Monarchi and Puhr (1992), and Wirfs-Brock and Johnson (1990),

2.0 Methods and Materials

Interestingly, on p. 38 of their text, Coad and Yourdon (1991b) say, "Some
modifications are likely to occur that are modifications of the requirements
specified during 00A." However, there is no place in the C&Y OOA that calls for
a requirements analysis! Since the system under consideration was originally
programmed and designed by the present author, interviews were not necessary to
arrive at a list of requirements, at least for the present version. A list of
requirements deemed desirable for the new system is included below.

The tool used to construct OOD diagrams using the C&Y notation is a tool
produced by Peter Coad's group at Objects International, Inc. It is available as
shareware over the WWW at Uniform Resource Locator http://www.oi.com. A
summary of the notation is shown in Figure 1, while an explanation of the five
layers described by this notation is found in Appendix 1. The current approach,
however, adopts that of Wang’s (1995) approach, namely, that cardinalities
between systems are omitted because they are sometimes difficult to determine.

3.0 Results

The notational design of the new system is shown in Figure 2. This should be
considered a provisional design, as the system has not been completely coded and
at least some changes in the design should be expected.

In addition to determining the five layers outlined in Appendix 1, OOD entails
four other activities, namely, designing:

o The Problem Domain

o The Human Interaction Component

o The Task Management Component

o The Data Management Component

4

In this study, the Problem Domain component needed a requirements
specification to add to Classes that were still of use from the previously mentioned
OOA. The Human Interaction Component was virtually non-existent, as the entire
system is designed to be run automatically, that is, in a non-interactive mode. The
Task Management Component forms an important portion of the system in that a
particular sequence of operations must be followed, and the Data Management
Component constitutes the largest element.

3.1 The Problem Domain Component

The C&Y OOD methodology offers this strategy towards designing the Problem
Domain component:

o Apply OOA

o Use OOA results and improve them during OOD

o Use OOA results and add to them during OOD

Some of the Classes discovered in the OOA of the present system (Hendee
1996) were eligible for use in the new design. Following is a description of
requirements the new system is to contain.

3.1.1 Requirements Analysis

There are several levels of quality control (QC) for the C-MAN data as they
arrive. The first level is range-checking. If an instrument is malfunctioning, there
is a good probability that numbers that are recorded are way out of range. A simple
range check would flag numbers that are grossly out of range for the parameter
being measured. The next problem deals with accuracy. For instance, a
salinometer instrument may measure a salinity of 35.5 practical salinity units (psu),
but a "ground-truth" measurement, that is, a true measurement of salinity using
either wet chemistry or an instrument calibrated immediately beforehand in the
laboratory by wet chemistry, may yield a value of 35.0. This means that the
measurement by the instrument in the field drifted 0.5 psu over time. The
oceanographic instruments used in the field by FIO are calibrated every one to two
weeks (sometimes four) to compensate for this drift, and the drift corrections are
sent to NDBC for their final QC of the data. Another problem deals with precision
of the instruments, but that is more of a cost issue than one of field logistics or data
collection.

There is a chance, then that the near real-time data that are received are
inaccurate, if slightly so. It would be desirable to have a system in which the data

5

that are posted are as near correct as possible, and to have the these data in a time
frame of less than several months, as some time-sensitive features of the ecosystem
in which direct sampling or witness by investigators might be missed. Another
desired function of a new, near real- time data processing system would be the
dissemination of these data via the Internet. Such a system would automatically
transmit the C-MAN data via e-mail, and post them to a World-Wide Web Home
Page.

It would also be helpful if there was an automated system for making sense out
of the huge amount of data that are continually processed; that is, the provision of a
data summary.

Finally, it would be highly desirable if the new system were written in a portable
object-oriented programming (OOP) language that would allow easier development
of new capabilities (something OOP languages are noted for) and for deployment
under other platforms.

A new system is herewith proposed wherein the FIO Field Technician who is
responsible for maintenance of the oceanographic instrumentation uploads a data
file to a special FTP site which has the most recent or probable amount of drift
corrections for each oceanographic instrument, as soon as possible after the
corrections are determined. The new system reads those corrections each day when
new data are distributed, and applies them to the incoming data. Those data are
then processed through an Expert System (ES), such as used in Hendee (1995), to
determine:

(a) if the data are within acceptable ranges for that time of year, at that station
and for that time of day,

(b) what certain interrelationships of the data mean at that particular time,
(c) what real-time features might be occurring at that particular time that would

be of immediate interest to environmental managers and research scientists.

To illustrate these eventualities, consider these cases. A sensor may read salinity
within an acceptable range (say 32 to 36 psu), but during the rainy season historical
data have shown that salinities over 34 near the surface are highly unlikely. There­
fore, a sensor which reads 35 or 36 may be in error, and the data should be flagged
as suspicious. In another case, a photosynthetically active radiation (PAR) sensor
at 3 meters may read that the usual amount of sunlight available for phytoplankton
is reaching that depth; on the other hand, a transmissometer, which measures the
amount of light that passes through the water, might indicate highly turbid waters.
In such a case, one of the instruments is probably malfunctioning, even though both
are reading within acceptable ranges for the instrument. Finally, a number may be
out of the typical range for that station, at that time of year, at that time of day, but
it might indicate a real event. In fact, this happened during the summer of 1993
when flooding of the Mississippi River lowered salinities as far away as the Florida
Straits! That is, salinities were abnormally low, but a real event was occurring. At

6

that particular time, first hand witnessing of the effects of the Mississippi River on
the biota could not be be witnessed, because the lag between data collection and
review were too great.

Critically reviewing daily data from six stations which are collecting numbers
every hour is a difficult and time-consuming task. An ES that could be constructed
to provide English- language constructs of data summaries would be most valuable.
For instance, a 24 hour summary might read:

Molasses Reef:
PAR at surface remained high during the day.
PAR at 3 meters remained low.
=>
PAR at 3 meters:

malfunction, biofouling, high turbidity, or
Murphy Factor

In summary then, what is required in the new system is:

1) A near real-time ground-truth adjustment system

2) An Expert System which contains

a) range checker

b) data parameter cross-checker

c) data summarizing facility

3) A portable programming language

3.2 The Human Interaction Component

The C&Y OOD strategy for designing this component consists of the following:

o Classify the humans

o Describe the humans and their task scenarios

o Design the command hierarchy

o Design the detailed interaction

o Continue to prototype

7

o Design the HIC Classes

o Design, accounting for Graphical User Interfaces

3.2.1 Classify the Humans, Describe their Tasks

There are at least four groups of people who will use the system:

The FIO Field Technicians. Two field technicians maintain all six C-MAN
stations. They will be responsible for conducting ground-truthing of salinity and
sea temperatures at each of the stations. After they have determined the instrument
reading adjustments necessary, they will upload a file (called TRUTH.DAT, see
Appendix 2) to an FTP site accessible by the new system.

The System Operator. This person oversees operation of the system and initiates
the program, which continues to run without interruption except for times of
maintenance, breakdown, etc.

The Field Scientist. Scientists review the data over the WWW or by reviewing their
e-mail. If they have questions or suggestions for improvement of the system, they
forward them to the System Operator.

The Casual Browser. WWW users visit the CHAMP WWW site quite often.
Some of them simply browse around to see what it is all about. This part of the
complete system, however, actually belongs under a different problem domain, that
of the WWW data management.

3.2.2 Describe the Command Hierarchy

The current system design has no interactive mode for the user of the data
acquisition software. It is anticipated that the entire system will be automated and
that once it is set into motion, no interaction by the operator will be necessary.
Because of this, the remaining tasks under the Human Interaction Component are
rendered moot.

3.3 The Task Management Component

The following strategy is outlined for this component:

o Identify event-driven tasks

o Identify clock-driven tasks

o Identify priority tasks and critical tasks

8

o Identify a coordinator

o Challenge each task

o Define each task

All of the tasks are managed within the Class-Object called Task Manager in the
order in which they are listed as Services.

3.3.1 Identify Event-Driven Tasks

There are no event-driven tasks under this design.

3.3.2 Identify Clock-Driven Tasks

All of the events under the Class-Object TaskManager are initiated by a batch
file called TIMER.BAT. This batch file starts with a shareware utility called
WAITUNTL.EXE which takes a command line argument of a time to wait until,
after which it quits. After a time of 04:10 hrs, WAITUNTL.EXE quits and the next
line in the batch file TIMER.BAT executes. The command line arguments within
TIMER.BAT are represented by the Services under Task_Manager.

3.3.3 Identify Priority Tasks and Critical Tasks

Since each task is sequential, and each depends on the one before it, every task
of equal priority.

3.3.4 Identify a Coordinator

The coordinating task is TIMER.BAT.

3.3.5 Challenge Each Task

Although it appears that the number of tasks have been kept to a minimum,
experience with the system may come to prove that some tasks may be
consolidated.

3.3.6 Define Each Task

Some of the tasks below are exactly as described in the OOA of the previous
system (Hendee 1996); hence, reference is made to that document where
appropriate.

Run_ScriptGenerator. Same as in the OOA.

Run ProcommScript. Same as in the OOA.

9

RunDataRenamer. Same as in the OOA.

RunSandKey.ST, Run_LongK.ey.ST, Run_Sombrero.ST, RunMolasses.ST,
Run_Fowey.ST, Run_Dry_Tortugas.ST. Unlike the system described previously in
the OOA, the present system will run individual programs for each station, since
each station has different data profiles. The .ST suffix represents that the code for
the program is Smalltalk code.

Run_Expert_System. The ES will be run against each of the C-MAN stations (six
total). One of the outputs for each station is intended to be a data file that has
suspicious data points flagged; another output for each station is envisioned to be a
data summary. Since this portion of the system has not yet been prototyped, it is
not known whether just one ES will be best, or more.

Run WebDocMaker. This service will run a small program which just makes a
Hypertext Markup Language (HTML) document from the document from
immediately above so that the data can be viewable over the WWW.

Run_E-MailSender. This service will run a command line e-mail program which
will send the data bulletins to whomever has requested them.

3.4 The Data Management Component

The Data Management Component consists of four activities:

a) Data acquisition

b) Data extraction (parsing)

c) Data review

d) Data transmittal

3.4.1 Data Acquisition

All the data acquisition Classes described in the OOA were imported into the
new design, and this serves to underscore the validity of the OOA/OOD approach.
Even though the programming languages will be different, the Classes, Attributes
and Services will not change. These Classes include ScriptGenerator, Procom-
mScript, ZyXEL Modem, Procomm, RawDataFile, DataRenamer and
ReNamedFile. See the OOA for a complete description of these Classes. For a
look at a small part of the data stream in RawDataFile, see Appendix 3.

10

3.4.2 Data Extraction (Parsing)

The elegance of OOP is clearly illustrated in this portion of the Data
Management Component. As suggested in the C&Y OOD methodology, a protocol
was established by adding a generalization Class. As previously mentioned, the
programming language chosen for this project was Smalltalk, due mainly to its
portability but also to its pure object-oriented nature. Since all C-MAN stations
measure the same base meteorological parameters, and some oceanographic ones, a
basic Class named CmanBasic was constructed (see Appendix 4). The Services
(methods) in this Class could be used by all C-MAN stations that inherited from it,
and of course, Services that needed modifying for a particular C-MAN station could
be redefined for that station. For instance, if you look at Figure 2 and note the
Services defined for CmanBasic, then look at the Services for an inherited Class,
Sand_Key, you will note that the Services windDirection and windSpeed are
redefined in the latter Class. (Please note that Services have not been listed for all
Classes in order to save space on the figure.) This is because those parameters are
located at different positions in the data stream (Class RawDataFile, or file
DAPS.DAT) for Sand Key than they are for most other C-MAN stations. For
comparison, see the CmanBasic Class code and the Sand_Key Class code listed in
Appendix 5.

In Figure 2 you will note that each of the six C-MAN stations which are
represented with Smalltalk code (*.ST), also have an instance connection to an
ASCII file resulting from the invoking of the program. For an example of the
SandKey.ST Smalltalk program see Appendix 6; for an example of the resulting
ASCII bulletin, see Appendix 7. To see how the reports now differ (as compared to
those presented in the previous 00A, in which all reports had the same format),
compare the Sand Key report with the Molasses Reef report shown in Appendix 8.
Also notice that in the Molasses Reef report, garbage in the raw data file is now
replaced with "nil".

3.4.3 Data Review

Note that in the CmanBasic Class (Appendix 4) a preliminary range check may
be invoked if the programmer wishes. The methods rangeCheck (two versions) and
fuzi y RangeCheck can provide a first level check of data ranges without the use of
an t ,. However, it is anticipated that in the final design of the system, an ES will
handle all range checking and data summarization, as mentioned above.
Unfortunately, no code has been developed specifically for this Class; however, it is
anticipated that an approach like that of Hendee (1995) can be used.

3.4.4 Data Transmittal

Data will be transmitted to the user via the WWW in Class WebDocMaker, and
via e-mail in Class E-MailSender. See the Services Run WebDocMaker and
Run_E-MailSender under the Class Task_Manager for a fuller explanation.

li

4.0 Discussion and Conclusion

Because the actual coding (that is, the Implementation Stage) of the current
system is not complete, it is highly likely that certain details in the Design phase
will change. For instance, the ES will likely evolve to a complex system, and in
fact may actually become more than one ES. It is also probable that a Human
Interaction Component will be desirable, so that users of the system can review
older data. Finally, the current Data Management Component handles only flat file
data. As object- oriented database management system (OODBMS) technology is
learned, a shift to its use is probably in the future, and this will again require a
change in the OOD. However, because of the strength in the notational approach
inherent in OOD, and because OODBMS technology basically uses the existing
OOP language (see Loomis 1995) in its implementation, it is felt that representation
of new Classes will not be that difficult.

Much has been written in the literature about the chasm that exists between
analysis and design. Experience gained in this study and the one before it for OOA
(Hendee 1996) leave this author with the impression that the most difficult task in
bridging this gap is in constructing a requirements analysis ahead of time.
Constructing an OOA of an existing system is straight-forward , yet conducting a
requirements analysis and an OOD require iterations until the system is built. It is
interesting that Coad and Yourdon (1991a and 1991b) dance around this issue
without firmly pinning it down. Since the same notation is used in C&Y OOA and
OOD with good transition, it would seem that a useful methodology could be
adopted and described by these authors to address the need of a clear approach to
requirements analysis. Bailin (1989) believes that Entity Relationship Diagrams
should be used in requirements analysis and gathering, and though this departs from
the more modem approaches, at least he discusses the importance of the subject and
identifies it as a separate activity from “analysis” and “design”.

12

5.0 Bibliography

Bailin, S. 1989. An object-oriented requirements specification method. Comm.
ACM 32(5): 608-623.

Booch, G. 1991. Object-oriented design: with applications. Benjamin/Cummings,
Redwood City, CA.

Capretz, L. and Lee, P. 1993. Object-oriented design: guidelines and techniques.
Information and Software Technology 35(4): 195-206.

Coad, P. 1992. Object-oriented patterns. Comm. ACM 35(9): 152-159.

Coad, P.; North, D and Mayfield, M. 1995. Object models. Strategies, patterns, and
applications. Yourdon Press, Englewood Cliffs, NJ.

Coad, P. and Yourdon, E. 1991. Object-oriented analysis. Prentice-Hall,
Englewood Cliffs, NJ.

de Champeaux, D. and Faure, P. 1992. A comparative study of object-oriented
analysis methods. J. Object-Oriented Programming (April): 21-33.

Eckert, G. and Golder, P. 1994. Improving object-oriented analysis. Information
and Software Technology 36(2): 67-86.

Fichman, R. and Kemerer, C. 1992. Object-oriented and conventional analysis and
design methodologies. IEEE Computer, October: 22-39.

Graham, 1.1991. Object-oriented methods. Addison-Wesley, NY.

Hendee, J. 1995. PELAGOS: An expert system for quality control and feature
recognition of oceanographic data from the open ocean. NOAA Tech.
Memorandum ERL AOML-87.

Hendee, J. 1996. Object-oriented analysis of a near real-time marine environmental
data acquisition and reporting system. NOAA Technical Memorandum
ERL AOML-?? [to be submitted].

Henderson-Sellers, B. and Edwards, J. 1990. The object-oriented systems life cycle.
Comm. ACM 33(9): 142-159.

Lieberherr, K. and Holland, I. 1989. Assuring good style for object-oriented
programs. IEEE Software (September): 38-48.

Loomis, M.E.S. 1995. Object databases. The essentials. Addison-Wesley.

13

Losavio, F., Matteo, A. and Schlienger, F. 1994. Object-oriented methodologies of
Coad and Yourdon and Booch: comparison of graphical notations.
Information and Software Technology 36(8): 503-514.

McKim, J.; Jr. 1995. Class interface design and programming by contract. Proc.
TOOLS Pacific. Prentice-all; Englewood Cliffs, NJ.

Meyer, B. 1992. Applying “Design by contract”. IEEE Computer (October): 40-51.

Monarchi, D. and Puhr, G. 1992. A research typology for object-oriented analysis
and design. Comm. ACM 35(9): 35-47.

Nerson, J-M. 1992. Applying object-oriented analysis and design. Comm. ACM
35(9): 63-74.

Rubin, K. and Goldberg, A. 1992. Object-behavior analysis. Comm. ACM 35(9):
48-62.

Rumbaugh, J. Blaha, M. Premerlani, W. Eddy, F. and Lorensen, W. 1991. Object-
oriented modeling and design. Prentice Hall, Englewood Cliffs, N.J.

Shlaer, S. and Mellor, S.J. 1988. Object-oriented systems analysis: Modeling the
world in data. Prentice Hall, Englewood Cliffs, NJ.

Wang, S. 1995. Object-oriented task analysis. Information & Management 29: 331-
341.

Wegner, P. 1992. Dimensions of object-oriented modeling. IEEE Computer
(October): 12-20.

Whitten, J.; Bentley, L.; and Barlow, V. 1994. Systems analysis and design
methods, 3rd edition. Richard D. Irwin, Inc. Burr Ridge, IL.

Wirfs-Brock, J. and Johnson, R. 1990. Surveying current research in object-oriented
design. Comm. ACM 3(9): 104-124.

14

Name (top section)

Attributes (middle section)

Services (bottom section)

Gen-Spec Structure Whole-Part Structure

1 Instance Connection

Message Connection

Whole

Sender

Specialization

Generalization

Attribute 1
Attribute2

Servicel
Service2

Specialization!

Receiver

Attributel
Attribute2
Service!
Service2

Subject (may be expanded or collapsed) Note In addition OOA uses Obiect State Diagrams
and Service Charts for specifying Services

Figure 1. OOA notations. (From Coad and Yourdon 1991a, 1991b).

15

16

Fi
gu

re
 2

. N
ot

at
io

n r
ep

re
se

nt
in

g
an

 o
bj

ec
t-o

rie
nt

ed
 d

es
ig

n
of

 a
ne

w
 N

O
A

A
/A

O
M

L/
O

CD
 n

ea
r

re
al

-ti
m

e m
ar

in
e e

nv
iro

nm
en

ta
l d

at
a

ac
qu

is
iti

on
 an

d
re

po
rti

ng
 sy

st
em

.

Appendix 1

Object-oriented Analysis
Notations and Strategies

(from Coad and Yourdon 1991a)

Object. An abstraction of something in a problem domain, reflecting the capabilities of a system to keep information about or
interact with it; an encapsulation of Attribute values and their exclusive Services.

Class. A description of one or more Objects with a uniform set of Attributes and Services, including a description of how to
create new objects in the Class.

Structure. Structure is an expression of problem-domain complexity, pertinent to the system's responsibilities. The term
"Structure" is used as an overall term, describing both Generalization-Specialization (Gen-Spec) and Whole-Part Structures.

Gen-Spec Structures. For potential generalizations and specializations, ask:

Is it in the problem domain?
Is it within the system's responsibilities?
Will there be inheritance?
Will the specializations meet the criteria for Class & Objects?

Whole-Part Structures. Consider these variations:

Assembly-Parts
Container-Contents
Collection-Members

Consider each Object as a whole. For its potential parts, ask:

Is it in the problem domain?
Is it within the system's responsibilities?
Does it capture just a status value?
Does it provide a useful abstraction in dealing with the problem domain?

Subject. A Subject is a mechanism for guiding a reader (analyst, problem domain expert, manager, client) through a large,
complex model. Subjects are also helpful for organizing work packages on larger projects, based upon initial OOA
investigations.

Attribute. An Attribute is some data (state information) for which each Object in a Class has its own value.

Instance Connection. An Instance Connection is a model of problem domain mapping(s) that one Object needs with other
Objects, in order to fulfill its responsibilities.

Service. A Service is a specific behavior that an Object is responsible for exhibiting.

Message Connection. A Message Connection models the processing dependency of an Object, indicating a need for Services in
order to fulfill its responsibilities.

17

Appendix 2

Example Ground-Truth Data File,
TRUTH.DAT

Sta
FWYF1

Sal_lm
+00.20

Sal_3m
+00.00

Tem_lm
+00.00

Tem_3m
+00.00

MLRF1 +00.10 +00.00 +00.00 +00.00
LON FI +00.20 +00.00 +00.00 +00.00
SMKF1 IOOW +00.00 +00.00 +00.00
SAN FI +00.40 +00.00 +00.00 +00.00
DRY FI +01.20 +00.70 +00.00 +00.00

18

Appendix 3

Portion of File DAPS.DAT
(Class RawDataFile)

2240C45C96068090615G53-0NN015EFF0032530858 0900 MLRF1 46III /237096(/l 95114) 10241 30106(3////) 40119(4III/)
222//00228 333 921102(921121) WWW233093(192110)W231079(186099)W235065(1880
84)W239053(186076)W234057(183080)W238063(189 085)W23610657(19612355)W235068(187089)W015(0 13) Sllll
A10019 A20020 FI0000034 22.88 53.3 35.2 15.5
////////////////

2240C45C96068080615G54-0NN015EFF0032528858 0800 MLRF1 46////239067(/190087) 10241 30113(3////) 40127(4////)
222//00229 333 921068(921089) WWW233068(188086)W222060(180075)W215060(1740
78)W214059(172074)W211051 (169063)W 199057(158 070)W18907731(18809257)W216059(174074)W007(0 08) Sllll
A10019 A20020 FI0000034 23.01 53.6 35.4 15.6
////////////////

2240C45C96068070615G54-0NN015EFF0032530858 0700 MLRF1 46////192062(/154074) 10240 30111(3////) 40124(4////)
222// 00227 333 921065(921079) WWW196059(157072)W205056(165068)W210055(1710
66)W216054(177064)W226050(185060)W228049(186 059)W 19406559(15507959)W214054(174065)W004(0 05) Sllll
A10019 A20020 FI0000034 22.89 53.7 35.5 15.6
////////////////

19

Appendix 4

Source Code for the Digitalk /V Smalltalk
Class CmanBasic

Object subclass: #CmanBasic
instanceVariableNames:

' dataStream'
classVariableNames: ”
poolDictionaries: " !

! CmanBasic class methods !

new: aStringOfData
"initialize"

Asuper new initialize: aStringOfData! !

! CmanBasic methods !

airTemp
"put parsed stuff together"

| theNumber major minor |

major := dataStream copyFrom: 80 to: 81.
minor := dataStream copyFrom: 82 to: 82.
theNumber := major, 7, minor.
theNumber = ' . '

ifTrue: [theNumber := ’----- '].

AtheNumber!

baroPress
"barometric pressure"

| theNumber major minor gale |

major := dataStream copyFrom: 85 to: 87.
minor := dataStream copyFrom: 88 to: 88.

gale := dataStream copyFrom: 85 to: 85.
gale = ’O'
ifTrue: "no low pressure"
[AtheNumber := T,major, 7, minor]
ifFalse: "low barometric pressure"
[AtheNumber :=1 ’,major,7,minor]
!

dataStream
"Not needed here but often useful accessor method"

AdataStream!

fuzzyRangeCheck: aString from: aNumberl to: aNumber2 from: aNumber3
to: aNumber4 from: aNumber5 to: aNumber6

"Change aString to number, then return whether number is low, medium,
high, or none of those, in expected range."

| stringNum result |
result := ’? ’,aString.
stringNum := aString asFloat.

20

((aNumberl <= stringNum) & (stringNum <= aNumber2))
ifTrue: [result := 'L ',aString].
((aNumber3 <= stringNum) & (stringNum <= aNumber4))
ifTrue: [result :=' ',aString].
((aNumber5 <= stringNum) & (stringNum <= aNumber6))
ifTrue: [result := 'H ',aString].
Aresult!

initialize: aStringOfData
"assign argument"

dataStream := aStringOfData.!

numberCheck: aString
"If any characters in the string, * except* a decimal,

return a flag indicating bad data stream."
| input flag |

input:= aString.
input do: [:char |
((char ascii Value >= 48) & (char ascii Value <= 57))

ifFalse:[
char ascii Value = 46 "in case there is a decimal place"

ifFalse:[
flag := 'nil '.
Aflag]

]
ifTrue: [flag := aString]

]•

Aflag.

rangeCheck: aString from: aNumberl to: aNumber2
"Change aString to number, then see if it is the range aNumberl to aNumber2"

| stringNum |
stringNum := aString asFloat.

((aNumberl <= stringNum) & (stringNum <= aNumber2))

ifTrue: [A' ',aString]
ifFalse: [A'* ',aString]!

rangeCheck: aString from: aNumberl to: aNumber2 exclude: aNumber3
"Change aString to number, then see if it is the range aNumberl to aNumber2"

| stringNum |
stringNum := aString asFloat.
((aNumberl <= stringNum) & (stringNum <= aNumber2))
ifTrue: [A' ',aString]
ifFalse: [
stringNum = aNumber3

ifTrue: [A’ nil ’]
ifFalse: [A'*aString]].!

readingDate
"return Gregorian date from Year-Julian date string, e.g.,
96060, which would equal 02/29/96. I do not have the brains to tell
if this will screw up during 12/31/1999 to 01/01/2000"

| year julianDay yearPrefix |

21

year := dataStream copyFrom: 9 to: 10.
julianDay := dataStream copyFrom: 11 to: 13.

"Notice that in the next line I'm assuming that the reading date was
made in the same millenium as the current one (today)."
yearPrefix := (Date today year asString) copyFrom: 1 to: 2.

A(Date newDay: QulianDay asNumber) year: ((yearPrefix,year) asNumber)) asString.
!

readingTime
"put parsed stuff together"

| theNumber |

AtheNumber := (dataStream copyFrom: 14 to: 15),'00'

seaTemp_Integ
"parse out sea temperature integrated through the water column"

| major minor |

major := dataStream copyFrom: 118 to: 119.
minor := dataStream copyFrom: 120 to: 120.

Amajor,7,minor!

stationID
"Find 5-character station identifer"

| station |

station := dataStream copyFrom: 49 to: 53.

Astation!

windDirection
"parse wind direction from data stream"

AdataStream copyFrom: 65 to: 67.
i
windGust

"put parsed stuff together"
| theNumber major minor gale |

gale := dataStream copyFrom: 129 to: 131.
gale = *999'

ifFalse:
[major := dataStream copyFrom: 129 to: 130.

minor := dataStream copyFrom: 131 to: 131.
theNumber := major, 7, minor]

ifTrue: "bummer for South Florida..."
[major := dataStream copyFrom: 136 to: 137.

minor := dataStream copyFrom: 138 to: 138.
theNumber := major, 7, minor].

AtheNumber!

windSpeed
"put parsed stuff together"

| theNumber major minor |

22

major := dataStream copy From: 65 to: 66.
minor := dataStream copyFrom: 67 to: 67.
theNumber := major, 7, minor.
theNumber = ’ . *

ifTrue: [theNumber :='----- '].

AtheNumber! !

23

Appendix 5

Source Code for Digitalk /V Smalltalk
Class SandKey

CmanBasic subclass: #SandKey
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

! SandKey class methods ! !

! SandKey methods !

par_lm
"parse out photosynthetically active radiation at surface"

AdataStream copyFrom: 292 to: 295
f
par_3m

"parse out photosynthetically active radiation at 3 meters"
AdataStream copyFrom: 299 to: 302

j
par_Surf

"parse out photosynthetically active radiation at surface"
AdataStream copyFrom: 285 to: 288

f
salin_3m

"parse out salinity at 1 meter"
AdataStream copyFrom: 339 to: 342

I
seaTemplm

"parse out sea temperature integrated through the water column"
| major minor |

major := dataStream copyFrom: 307 to: 308.
minor := dataStream copyFrom: 309 to: 309.

Amajor,7, minor!

seaTemp_3m
"parse out temperature at 3 meters"

| major minor |

AdataStream copyFrom: 322 to: 326
!

windDirection
"parse wind direction from data stream"

AdataStream copyFrom: 70 to: 72
i
windSpeed

24

"put parsed stuff together"
| theNumber major minor |

major := dataStream copyFrom: 73 to: 74.
minor := dataStream copyFrom: 75 to: 75.
theNumber := major, 7, minor.
theNumber =' . '

iff rue: [theNumber :='----- '].

AtheNumber

Appendix 6

Source Code for Digitalk /V Smalltalk
Program SandKey.ST

"Program to parse Sand Key C-MAN data out ofDAPS.DAT file,
by James C. Hendee
03/23/96"

inputFile := File pathName: 'd:\temp\daps.dat\ "Raw data file."
" put in something to kill preexisting file, otherwise, you get a funky overwrite..."
outputFile := File pathName: 'd:\temp\sandkey.dat'. "File to record results."
truthFile := File pathName: 'd:\temp\truth.dat'. "File with groundtruth data."

outputFile
nextPutAll:' Coastal-Marine Automated Network (C-MAN)';
nextPut: Lf;
nextPutAll:' — Sand Key (SANF1) —
nextPut: Lf;nextPut: Lf;
nextPutAll: ’Date GMT WD WS WG BAROM AT ST-I ST-1 ST-3 SAL3 PARs PARI PAR3’; nextPut: Lf.

groundTruth := GroundTruth new.

[truthFile atEnd] "Assign drift corrections (ground truth data) to variables
so you can correct data read from instrument (inputFile)."

whileFalse:
t
aLine := truthFile nextLine. "include test for aLine size = 0?"
groundTruth initialize: aLine.
truthStation := groundTruth correctedStation.
truthStation = ’SANF1’

ifTrue:
[sanf 1 Salin_3m := groundTruth salin_3m.].

].
truthFile close.

[inputFile atEnd]
whileFalse:

[
aLine := inputFile nextLine.
station := CmanBasic new. "Don’t know what the station is yet, so assume basic."
station initialize: aLine.

aLine size > 180 "Don’t use trashed lines? What size to use!!?’’
ifTrue:
[
chosenStation := station stationID.
chosenStation = ’SANF1'

ifTrue:
[
station := SandKey new.
station initialize: aLine.
’’ *** SALINITY at lm *** "
"--------First check to see if string is garbage.---------"
(station numberCheck: (station salin_3m)) = ’nil ’

26

ifFalse:[" Apply groundtruth adjustments to parameters here. "
sanfl Salin_3m = 'IOOW' " Instrument Out Of Water."
ifFalse:[

salin_3m := (((station salin_3m) asFloat) + ((sanfl Salin_3m) asFloat)) asString.

"This is a simple range checker, but be careful, because the exclude
means that number (0.0) can never be a good number!"

salin_3m := station rangeCheck: salin_3m from: 34.5 to: 36.5 exclude: 0.0.
"This assigns subject range of? (say what?), L (low), okay (no mark) or H (high):"
"salin_lm := station fuzzy RangeCheck: salin_3m

from: 33.0 to: 34.4
from: 34.5 to: 36.0
from: 36.1 to: 37.0."

]
ifTrue: [salin_3m := 'IOOW'].
]

ifTrue:[salin_3m :=' nil']. " Namely, you got garbage."

outputFile
"nextPutAll: chosenStation;"
nextPutAll: (station readingDate);
nextPutAll: (’ ',(station readingTime));
nextPutAll: (’ ',(station windDirection));
nextPutAll: (' ',(station windSpeed));
nextPutAll: (' ',(station windGust));
nextPutAll: (' ',(station baroPress));
nextPutAll: (' ',(station airTemp));
nextPutAll: (' ',(station seaTemp_Integ));
nextPutAll: (' ’,(station numberCheck: (station seaTemplm)));
nextPutAll: (' ',(station numberCheck: (station seaTemp_3m))); " no groundtruth "
nextPutAll: (' ’,salin_3m); " groundtruth checked "
nextPutAll: (' ',(station par_Surf));
nextPutAll: (’ (station par lm));
nextPutAll: (' ',(station par_3m));
nextPut: Lf. "end of record"

]•

i
]■

inputFile close.
outputFile close.

27

Appendix 7
Sample Report from SandKey.ST

Coastal-Marine Automated Network (C-MAN)
-- Sand Key (SANF1)

Date GMT WD WS WG BAROM AT ST-1 ST-1 ST-3 SAL 3 PARS PARI PAR 3
03/08/96 0900 268 10.7 11.9 1011.4 24.4 23.6 23.8 23.78 36.2 0022 0100 0048
03/08/96 0800 312 05.9 07.2 1011.5 24.0 23.7 23.9 23.91 36.2 0020 0100 0048
03/08/96 0700 246 13.2 14.8 1011.9 24.5 23.7 23.9 23.89 36.2 0020 0101 0048
03/08/96 0600 222 07.5 08.9 1012.4 24.8 23.8 24.0 23.95 36.2 0020 0101 0049
03/08/96 0500 179 06.2 06.8 1012.9 24.8 23.8 24.1 24.00 36.2 0020 0101 0048
03/08/96 0400 160 05.6 06.5 1012.3 24.5 23.9 24.2 24.02 36.2 0020 0101 0049
03/08/96 0300 135 07.8 08.5 1012.4 24.5 23.9 24.2 24.13 36.2 0020 0101 0049
03/08/96 0200 115 03.4 03.7 1012.9 24.4 24.0 24.2 24.18 36.2 0021 0100 0049
03/08/96 0100 128 03.8 04.2 1012.2 24.5 23.9 24.1 24.20 36.2 0021 0101 0049
03/08/96 0000 155 02.8 03.1 1011.6 24.8 24.0 24.1 24.22 36.1 0021 0100 0049
03/07/96 2300 213 03.1 03.6 1011.3 25.2 24.1 24.4 24.29 36.1 0096 0136 0052
03/07/96 2200 210 03.9 04.5 1010.8 25.2 24.2 24.6 24.31 36.2 0333 0280 0183
03/07/96 2100 173 05.5 06.1 1010.5 25.2 24.1 24.7 24.31 36.1 0578 0428 0313
03/07/96 2000 188 06.5 07.4 1011.0 25.1 24.1 24.8 24.33 36.1 0779 0571 0413
03/07/96 1900 207 07.5 08.5 1011.9 25.0 24.1 24.6 24.27 36.1 0926 0725 0530
03/07/96 1800 198 08.5 08.8 1012.5 25.0 24.2 24.6 24.44 36.0 0998 0667 0538
03/07/96 1700 196 09.4 10.8 1013.3 25.0 23.7 24.1 24.06 35.8 0986 0611 0478
03/07/96 1600 176 10.7 12.4 1013.7 24.8 23.2 23.6 23.37 35.5 0889 0547 0383
03/07/96 1500 174 12.3 14.6 1013.9 24.6 23.1 23.5 23.33 35.6 0746 0446 0308
03/07/96 1400 159 13.5 15.3 1013.4 24.6 23.0 23.4 23.26 35.6 0531 0335 0201
03/07/96 1300 168 13.9 16.0 1013.0 24.5 23.0 23.3 23.23 35.6 0241 0194 0051
03/07/96 1200 162 14.6 16.8 1012.4 24.4 23.0 23.2 23.17 35.6 0045 0112 0051
03/07/96 1100 161 12.1 14.4 1012.0 24.4 23.1 23.3 23.30 35.7 0020 0101 0048
03/07/96 1000 149 13.8 16.0 1011.4 24.4 23.2 23.4 23.39 35.7 0020 0101 0048
03/07/96 0900 144 14.8 16.8 1011.4 24.4 23.1 23.3 23.24 35.6 0020 0101 0048
03/07/96 0800 130 13.2 14.9 1011.9 24.2 23.2 23.3 23.35 35.7 0020 0101 0048
03/07/96 0700 132 12.3 13.6 1012.7 24.2 23.4 23.7 23.80 36.0 0020 0099 0048
03/07/96 0600 131 13.7 15.2 1013.5 24.1 23.4 23.7 23.73 35.9 0020 0100 0048
03/07/96 0500 130 10.6 11.9 1014.3 24.2 23.0 23.3 23.24 35.7 0020 0100 0048
03/07/96 0400 127 10.1 11.3 1014.6 24.1 22.6 22.9 23.07 35.2 0020 0099 0048
03/07/96 0300 123 10.0 10.7 1014.7 23.8 22.5 22.7 22.73 34.8 0020 0098 0048
03/07/96 0200 094 07.7 09.1 1014.7 23.1 22.5 22.7 22.73 34.8 0020 0097 0048
03/07/96 0100 080 07.6 08.1 1014.2 23.1 22.5 22.8 22.73 34.8 0020 0093 0048
03/07/96 0000 071 08.5 08.5 1013.7 23.4 22.7 22.9 22.87 34.8 0021 0098 0048
03/06/96 2300 072 09.3 09.5 1013.5 23.8 22.8 23.0 22.99 34.9 0100 0137 0067
03/06/96 2200 088 07.2 07.6 1013.5 24.1 22.9 23.1 23.03 34.9 0345 0277 0136
03/06/96 2100 113 07.9 08.4 1013.6 24.3 22.9 23.2 23.08 35.0 0588 0441 0229
03/06/96 2000 128 08.2 09.1 1014.0 24.3 22.7 23.1 22.94 35.0 0788 0597 0315
03/06/96 1900 144 11.7 13.5 1014.3 24.3 22.6 22.9 22.78 34.9 0928 0653 0353
03/06/96 1800 149 13.1 15.1 1015.0 24.3 22.3 22.7 22.57 34.9 0999 0680 0353
03/06/96 1700 153 11.7 13.2 1015.9 24.3 22.2 22.5 22.41 35.0 1001 0638 0333
03/06/96 1600 135 13.7 15.2 1016.1 24.4 21.9 22.3 22.14 35.1 0908 0556 0284
03/06/96 1500 134 13.9 15.6 1016.0 24.0 21.7 22.0 21.84 35.2 0748 0436 0211
03/06/96 1400 135 14.4 16.8 1016.1 24.0 21.5 21.7 21.66 35.3 0529 0310 0139
03/06/96 1300 120 13.0 14.6 1016.1 24.1 21.4 21.7 21.62 35.4 0255 0189 0085
03/06/96 1200 121 14.2 15.8 1015.6 23.7 21.4 21.7 21.64 35.4 0048 0113 0052
03/06/96 1100 121 14.2 15.9 1015.3 23.6 21.4 21.6 21.63 35.4 0020 0101 0048
03/06/96 1000 125 14.5 16.7 1015.2 23.6 21.4 21.6 21.62 35.4 0020 0101 0047

28

Appendix 8
Report for Molasses Reef

Coastal-Marine Automated Network (C-MAN)
— Molasses Reef (MLRF1) —

Date GMT WD WS WG BAROM AT ST-1 ST-1 SAL1 PARS PARI
03/08/96 0900 096 09.6 10.2 1010.6 24.1 22.8 22.88 35.2 0019 0020
03/08/96 0800 067 06.7 06.8 1011.3 24.1 22.9 23.01 35.4 0019 0020
03/08/96
03/08/96

0700
0600

062
050

06.2
05.0

06.5
05.1

1011.1
1012.3

24.0
24.2

22.7
22.7

22.89
22.81

35,5
35.5

0019
0019

0020
0020

03/08/96 0500 049 04.9 05.1 1012.2 24.1 22.6 nil nil 0019 0020
03/08/96 0400 064 06.4 06.7 1012.2 24.0 22.6 22.67 35.6 0019 0020
03/08/96 0300 029 02.9 03.0 1012.8 24.3 22.5 22.55 35.6 0019 0020
03/08/96 0200 031 03.1 03.1 1013.0 24.1 22.6 22.60 35.6 0019 0020
03/08/96 0100 047 04.7 05.0 1012.4 24.2 22.9 22.89 35.6 0019 0020
03/08/96 0000 038 03.8 04.1 1011.7 24.3 23.1 23.17 35.2 0019 0020
03/07/96 2300 056 05.6 05.7 1011.3 24.4 23.1 23.19 35.6 0058 0020
03/07/96 2200 119 11.9 12.7 1011.0 24.5 23.2 23.17 35.6 0261 0020
03/07/96 2100 125 12.5 13.3 1011.1 24.6 23.4 23.45 35.4 0471 0020
03/07/96 2000 115 11.5 12.6 1011.2 24.5 23.4 nil nil 0661 0020
03/07/96 1900 117 11.7 12.6 1011.9 24.5 23.6 23.62 35.5 0791 0020
03/07/96 1800 119 11.9 12.5 1012.8 24.5 24.0 23.98 35.6 0861 0020
03/07/96 1700 146 14.6 15.8 1013.3 24.4 23.7 23.78 35.6 0865 0019
03/07/96 1600 128 12.8 14.4 1014.1 24.3 23.6 23.67 35.6 0656 0019
03/07/96 1500 13 7 13.7 15.0 1014.2 24.3 23.5 23.51 35.7 0679 0019
03/07/96 1400 130 13.0 14.0 1014.0 24.2 23.4 23.42 35.6 0500 0019
03/07/96 1300 126 12.6 14.4 1013.5 24.1 23.3 23.39 35.6 0270 0019
03/07/96 1200 114 11.4 12.6 1012.9 23.9 23.3 23.35 35.7 0054 0020
03/07/96 1100 095 09.5 10.8 1012.4 23.8 23.2 23.27 35.6 0019 0020
03/07/96 1000 101 10.1 11.7 1012.0 23.8 23.1 23.17 35.4 0019 0020
03/07/96 0900 119 11.9 12.8 1012.1 23.8 23.1 23.15 35.7 0019 0020
03/07/96 0800 120 12.0 13.0 1012.7 24.0 23.1 23.15 35.7 0019 0020
03/07/96 0700 118 11.8 13.0 1013.4 23.9 23.3 23.33 35.5 0019 0020
03/07/96 0600 102 10.2 12.0 1014.1 23.8 23.3 23.38 35.6 0019 0020
03/07/96 0500 095 09.5 10.3 1014.5 23.7 23.2 nil nil 0019 0020
03/07/96 04 00 075 07.5 07.9 1014.9 23.6 23.2 nil nil 0019 0020
03/07/96 0300 068 06.8 07.4 1015.1 23.7 23.2 nil nil 0019 0020
03/07/96 0200 075 07.5 08.2 1015.1 23.9 23.2 23.22 35.6 0019 0020
03/07/96 0100 100 10.0 11.0 1014.6 23.9 23.2 nil nil 0019 0020
03/07/96 0000 078 07.8 08.5 1014.4 23.9 23.3 23.33 35.9 0020 0020
03/06/96 2300 072 07.2 07.5 1014.3 24.1 23.6 23.59 35.7 0060 0020
03/06/96 2200 046 04.6 04.9 1014.3 24.2 23.8 23.79 35.6 0262 0020
03/06/96 2100 054 05.4 05.7 1014.2 24.2 23.9 nil nil 0482 0020
03/06/96 2000 060 06.0 06.5 1014.8 24.2 23.9 23.94 35.7 0632 0020
03/06/96 1900 094 09.4 10.5 1015.0 24.1 23.8 23.82 35.8 0800 0020
03/06/96 1800 112 11.2 12.2 1015.6 24.1 23.7 23.78 35.7 0874 0020
03/06/96 1700 113 11.3 12.1 1016.5 24.0 23.6 nil nil 0846 0020
03/06/96 1600 116 11.6 12.7 1016.8 23.9 23.5 23.56 35.7 0804 0020
03/06/96 1500 134 13.4 14.7 1016.8 23.8 23.4 23.45 35.7 0683 0019
03/06/96 1400 127 12.7 14.1 1016.8 23.8 23.2 nil nil 0020 0020
03/06/96 1300 143 14.3 15.4 1016.6 23.7 22.9 23.01 35.9 0029 0020
03/06/96 1200 135 13.5 14.4 1016.3 23.6 22.5 nil nil 0020 0020
03/06/96 1100 145 14.5 15.9 1016.1 23.5 22.1 nil nil 0019 0020
03/06/96 1000 146 14.6 16.2 1015.9 23.5 22.0 nil nil 0019 0020

29

*U.S. GOVERNMENT PRINTING OFFICE 1996-0-790-301/400 23

	Structure Bookmarks
	QC807.5.U6A5no.89c.2
	Table of Contents
	Abstract
	1.0 Introduction
	1.1 Object-Oriented Design

	2.0 Methods and Materials
	3.0 Results
	3.1 The Problem Domain Component
	3.1.1 Requirements Analysis

	3.2 The Human Interaction Component
	3.2.1 Classify the Humans, Describe their Tasks
	3.2.2 Describe the Command Hierarchy

	3.3 The Task Management Component
	3.3.1 Identify Event-Driven Tasks
	3.3.2 Identify Clock-Driven Tasks
	3.3.3 Identify Priority Tasks and Critical Tasks
	3.3.4 Identify a Coordinator
	3.3.5 Challenge Each Task
	3.3.6 Define Each Task

	3.4 The Data Management Component
	3.4.1 Data Acquisition
	3.4.2 Data Extraction (Parsing)
	3.4.3 Data Review
	3.4.4 Data Transmittal

	4.0 Discussion and Conclusion
	5.0 Bibliography
	Figure 1. OOA Notations
	Figure 2. OOD Notation of Near Real-Time System
	Appendix 1. Object-oriented Analysis Notations and Strategies
	Appendix 2. Example Ground-Truth Data File
	Appendix 3. Portion of File DAPS.DAT
	Appendix 4. Source Code for the Digitalk /V Smalltalk Class CmanBasic
	Appendix 5. Source Code for Digitalk /V Smalltalk Class SandKey
	Appendix 6. Source Code for Digitalk /V Smalltalk Program SandKey.ST
	Appendix 7. Sample Report from SandKey.ST
	Appendix 8. Report for Molasses Reef

